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In a recent paper �V. Aji and C. M. Varma, Phys. Rev. Lett. 99, 067003 �2007�� we have shown that the
dissipation driven quantum phase transition of the two-dimensional XY model represents a universality class
where the correlations at criticality are local in space and power law in time. Here we provide a detailed
analysis of the model. The local criticality is brought about by the decoupling of infrared singularities in space
and time. The former leads to a Kosterlitz-Thouless transition whereby the excitations of the transverse
component of the velocity field �vortices� unbind in space. The latter, on the other hand, leads to a transition
among excitations �warps� in the longitudinal component of the velocity field, which unbind in time. The
quantum Ashkin-Teller model, with which the observed loop order in the cuprates is described, maps in the
critical regime to the quantum XY model. We also discuss other models which are expected to have similar
properties.
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I. INTRODUCTION

The dissipative quantum two-dimensional �2D� XY model
was introduced1,2 to describe experiments on ultrathin granu-
lar superconducting films, where it was observed that above
a normal-state sheet resistance of order RQ=h /4e2 the resis-
tivity does not decrease toward 0 even at the lowest tempera-
tures studied.3 The granular superconductor is represented by
an array of islands with finite superfluid density with Joseph-
son coupling �JC� among the nearest neighbors. Dissipation
of the Caldeira-Leggett4 form is included, whereby the phase
difference between the nearest neighbors is coupled to an
external bosonic bath. The external bath effectively acts as a
resistor, R, shunting nearest-neighbor islands, and energy is
dissipated at the rate V2 /R, where V is the voltage drop
which is proportional to the rate of change in the phase dif-
ference between the grains. A quantum phase transition oc-
curs as the value of the resistance is tuned. For small values
of the resistance, phase slips, whereby a voltage develops
across the junction between two grains, cost too much energy
and so lead to an ordered phase. On the other hand, for large
value of the resistance, phase slip events are energetically
favored and global superconductivity is destroyed.

In the absence of dissipation, the quantum model at T
→0 maps to a three-dimensional �3D� XY model. It was
suggested that the physics in the presence of dissipation may
not be continuously connected to the 3D XY universality
class.5 It was also suggested that there is a possibility that the
singularity introduced by dissipation may be linked to a tran-
sition driven by the unbinding in time of phase slips.6 The
calculations are done in the weak-coupling regime where one
considers the Josephson coupling perturbatively. The same
approach was previously used to study the phase transition
and correlation functions.1,6,7 Arguments were given also that
the critical fluctuations due to the unbinding of the phase
slips in time which have long-time singularities may be local
in space.1 However later work by some of the same authors
presents a rather different picture.8 Moreover none of these
investigations into the dissipative transition are applicable
near the critical point.

In a previous paper we have shown that the quantum
phase transition is obtained due to the proliferation of a new
kind of excitation, which we termed warps, whose physics is
indeed related to the phase slips in time; more specifically
they represent events in time where a change in the longitu-
dinal component of the velocity field9 occur. The possibility
that the longitudinal component may lead to the introduction
of sources and sinks which control the critical behavior was
also recently emphasized in the context of one-dimensional
systems.10,11 The correct identification of the relevant de-
grees of freedom in higher dimensions turns out to be inter-
esting. The introduction of warps simplifies the analysis of
the problem so that the correlation function of the order pa-
rameter can be obtained near the critical point. We find spa-
tially local correlations with an infrared divergence ��1 / t� in
temporal correlations at the critical point. We also study the
cross over from the quantum critical to the quantum regime.

The motivation for this study is that the existence of such
a critical point naturally explains some of the most important
features of the phase diagram of the Cuprate superconduct-
ors. Polarized neutron scattering12–15 in three distinct family
of cuprates have confirmed previous finding in a fourth fam-
ily of cuprates through dichroism in angle resolved photo-
emission spectra,16 which reported the observation of time-
reversal violation in the pseudogapped phase of underdoped
cuprates. In particular, the experiments lend support to the
idea that the ground state in the pseudogapped regime is one
with ordered current loops without loss of translation
symmetry.17–19 The low energy sector of this theory contains
four states that are related by time reversal and reflection
along the x or y axis. Alternatively, the four states can be
represented by two Ising variable in each unit cell, the �
values representing currents in the x and y directions. A clas-
sical statistical mechanical model for such degrees of free-
dom that supports a phase transition without any divergence
in the specific heat20,21 is the Ashkin-Teller model.22 Such a
model is known to undergo a Gaussian phase transition.23 A
quantum generalization of the classical model in terms of
operators that induce fluctuations within the low energy
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phase space of the four states, leads to the dissipative 2D XY
model studied here. The local criticality with a 1 / t singular-
ity is the fluctuation spectrum necessary to explain the
anomalous properties in a number of properties such a resis-
tivity, nuclear relaxation rate, and optical conductivity in the
normal state near optimal doping24 abutting the
pseudogapped phase. At long wavelengths, such correlations
are directly observed by Raman-scattering experiments. Re-
cently, we have also shown that such fluctuations couple to
fermions to promote pairing in the d-symmetry channel.25

It is worth pointing out that a number of classical statis-
tical mechanical models such as the six-vertex and eight-
vertex models also have Gaussian criticality in part of their
phase diagram, as well as phase transitions which do not
manifest any anomaly in their specific heat. Such models
when augmented with Ohmic dissipation do belong to the
same universality class considered here. Local quantum criti-
cality happens also to be a hallmark of the quantum phase
transitions in heavy fermions,26,27 although it is not clear to
us how the class of models solved here may be connected to
the microscopic models for heavy fermions.

This paper is organized as follows: The dissipative quan-
tum XY model and the Villain transformation are discussed
in Sec. II. In Sec. III, we show how dissipation changes the
critical properties of the model. We show that the action can
be written in a quadratic form in terms of two orthogonal
topological excitations, vortices which interact only in space
and warps which interact only in time. We also discuss the
difficulties in analyzing the model based on other choice of
variables. In Sec. IV we discuss the properties of the warps.
Section V deals with the scaling equations for the vortices
and warps and the phase transition which occurs through the
proliferation of warps. In Sec. VI we present a detailed cal-
culation of the fluctuation spectra near the quantum critical
point. The spectra have the same form as that proposed to
explain the normal-state marginal Fermi-liquid properties of
the high Tc cuprates. In Sec. VII we present the zero tem-
perature phase diagram. The connection to the Ashkin-Teller
model and cuprates is presented in Sec. VIII. The effect of
fourfold anisotropy on the critical properties is analyzed in
Sec. IX. In Sec. X we show how dissipation arises in cu-
prates. In Sec. XI we discuss other forms of dissipation and
how they may lead to different forms of singularities in the
fluctuation spectra.

II. DISSIPATIVE QUANTUM 2D XY MODEL

The classical 2D XY model consists of U�1� degrees of
freedom, represented by an angle �, living on the sites of a
regular lattice, assumed to be a square lattice here, with a
nearest-neighbor interaction of the form,

H = J�
�ij�

�1 − cos��i − � j�� , �1�

where J is Josephson coupling. Since a continuous symmetry
cannot be spontaneously broken in two dimensions,28,29 this
model does not support a long-range ordered phase. Never-
theless a phase transition does occur at finite temperature
where the correlation function of the order parameter eı�

changes from exponential to power law. This is the
Kosterlitz-Thouless-Berezinskii transition.30,31 The physics
of this phase transition is better understood in terms of the
topological defects of the system. To do so we follow the
standard procedure of using the Villain transform and inte-
grating out the phase degrees of freedom. We include the
algebra here so as to make the later discussion of the quan-
tum version easier to follow.

The Villain transform involves expanding the periodic
function in terms of a periodic Gaussian,

exp�− �J�
�ij�

�1 − cos��i − � j��	

 �

mij

exp�− �J�
�ij�

��i − � j − 2�mij�2/2	 , �2�

where mij are integers that live on the links of the original
square lattice. On a square lattice we choose to identify each
site as i=x ,y where x and y are integers. We can combine the
two link variables mx,y;x+1,y and mx,y;xy+1 into one two com-
ponent vector mx,y that lives on the site x, y of the lattice.
The choice is purely for convenience and none of the results
depend on how one chooses to organize the degrees of free-
dom of the model. Instead of introducing a new field to lin-
earize the quadratic term via the Hubbard-Stratonovich trans-
formation, we follow an alternative procedure. We expand
the quadratic term and transform to Fourier space. Keeping
the leading quadratic term �x,y −�x+1,y 
−a�x�xy, where a is
the lattice constant we get

��xy − �x+1,y − 2�mx,y
x �2 
 a2�x

2�xy + 4�a�x�xymx,y
x + 4�2mx,y

x2 ,

�3�

where mx,y
x is the x component of the vector field given by

the integer mx,y;x+1,y. Fourier transforming and integrating out
the field �k in terms of which the action is quadratic we get

Z 
 �
m

exp�− 4�J�2� dk� k2m · mk − �k · mk�2

k2 	 .

�4�

Combining the two terms and Fourier transforming to real
space we get

Z 
 �
m

exp�− �J�
r

�
r�

�� � mr� · �� � mr��ln�r − r��	 .

�5�

Since the vector field is two dimensional the curl is a scalar
and is the vorticity of the vector field. Defining integer
charges ��mr=�r we get the standard action of the two-
dimensional Coulomb gas. On the lattice this definition is
equivalent to

�x,y = mx,y+1;x+1,y+1 − mx,y;x+1,y + mx+1,y;x+1,y+1 − mx,y;x,y+1.

�6�

In this model, a phase transition occurs from a state at high
temperatures where the vortices are free to a low-temperature
state where they are bound in pairs.
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We now turn to the description of the Quantum version of
the 2D XY model. First we consider the model in the absence
of dissipation. The quantum 2D XY model is written in terms
of operators � and its conjugate, the number operator n. The
Hamiltonian is of the form

H = �
i

ni
2

2C
− J�

�ij�
cos��i − � j� , �7�

where C is the capacitance and �ni ,� j�= i	ij. Since ni
= i� /��i, the first term is the kinetic energy of the phase with
a mass C. There is competition between the kinetic energy
and the potential-energy terms, the former minimized by a
state where �i is disordered stabilizing an insulating phase
while the latter minimized by a fixed value of �i stabilizing a
superconductor. The partition function can be recast in the
form,

Z =� D�i�
�exp�− �
0

�

d
��
i

C

2
��
�i

2�

− J�
�ij�

cos��i − � j��	 . �8�

At T=0, the �imaginary� time direction becomes infinite in
extent, and the model is in the 3D XY universality class. The
dualization procedure used for the classical 2D XY model
can now be implemented on the 3D XY action as well. First
we discretize the imaginary time direction in units of �
 and
work on a three-dimensional lattice. Introducing the vari-
ables m which only live on the spatial links, the action is

Z 
 �
m

exp��
k,�

− 4�2J�
m · m

+
4�2J2ca2�
2�k · m�2

�Ca2/c�
��2 + Jca2�
k2	 , �9�

where c=a /�
. Rearranging terms as before we get

Z = �
m

exp��
k,�

− 4�2J� Jc�k � m�2 + �C/c��2�m�2

Jck2 + �C/c��2 �	 ,

�10�

where J→Ja2�
, C→Ca2 /�
, and m→m /a. The isotropic
model is recovered when the discretization in time is such
that �
=�C /J. Combining ��m �which is a scalar since m
is two dimensional� and �m /�
 into one three-dimensional
field we see that Eq. �10� is the partition function for the
three-dimensional loop gas model which is in the same uni-
versality class as the 3D XY model.32 A point to note here is
that a vector field coupling via a three-dimensional kernel
does undergo a phase transition while a scalar field does
not.33 Alternatively, the loop gas model undergoes a 3D XY
transition while the three-dimensional Coulomb gas is al-
ways in a disordered phase.

Alternate derivations34 map the model directly to the 3D
XY model instead of the loop gas model. We find that the
procedure described above is preferable in the presence of
dissipation.

In the dissipative 2D XY model, one adds to Eq. �8� a
term which generates in the equations of motion of the phase

variable a term proportional to the velocity, �̇. The dissipa-
tive part of the action is of the form,35

Sdiss = �
−



d
�
0

�

d
��
�ij�

�� ��i − � j��
� − ��i − � j��
��

 − 
�

�2

,

�11�

where �=RQ /R where RQ=h /4e2. For a single Josephson
junction the voltage drop is given by ���1−�2� /�
. The
power dissipated by a resistor connecting the two supercon-
ducting grains is ����1−�2� /�
�2 /R. Integrating over time
one obtains total energy dissipated through the resistor. For
an array of junctions the corresponding term in the action is
of the form in Eq. �11�. Such a dissipative term can also be
derived by assuming that the phase difference across every
junction is coupled to an external bath of harmonic oscilla-
tors. Integrating out the bath the dissipative term is obtained
in Fourier space as

Sdiss = ��
�n

�
�ij�

��n����i,�n
− � j,�n

�2. �12�

The exponent � reflects the form of the spectral density of
the external oscillator bath at low frequencies. For a linear
spectral density �=1 and an Ohmic dissipation is obtained.4

It is indeed interesting to ask what other forms of dissipation
is allowed. We will postpone the discussion of the effect of
such dissipative terms to Sec. XI.

III. EXCITATIONS OF THE QUANTUM 2D XY MODEL

We can now carry through the program of introducing the
vector field m for the quantum 2D XY model with Ohmic
dissipation ��=1�. The integration of the � fields can be
performed since the dissipative term is also quadratic. The
effective model is now written as

Z = �
m

exp��
k,�

− 4�2Jm · m +
4�2J2c�k · m�2

�C/c��n
2 + Jck2 + ���n�k2	

= �
m

exp��
k,�

− 4�2J
Jc�k � m�2

�C/c��n
2 + Jck2 + ���n�k2

− 4�2J
�n

2m · m�C/c + �k2/��n��
�C/c��n

2 + Jck2 + ���n�k2	 , �13�

where we have redefined �→�a3. The action in Eq. �13� has
two possible phase transitions, depending on whether the ca-
pacitance C or the dissipation term �� in the numerator of
the second term in Eq. �13� dominates in long-wavelength
and low-frequency limit. The former corresponds a critical
point with the dynamic critical z=1, i.e., we recover the loop
gas model which belongs to the 3D XY universality class.
The latter corresponds, as we will show to z=, i.e., a fixed
point with local criticality. The two terms have the same
scaling form for z=2. In the rest of the paper we analyze the
dissipation driven transition.

The vector field m can be written as a sum of a longitu-
dinal, ml, and a transverse component, mt which by defini-
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tion satisfy �� �ml=0 and �� ·mt=0. The vorticity field
�v�r ,
� is related to the transverse component alone and is
given by

�� � mt�r,
� = �v�r,
� = �vc�
i

	�r − ri�	�
 − 
i� , �14�

where �ri ,
i� are the location of the core of the vortices and
�vc is the quantized charge of the vortex.

Unlike the z=1 theory where dm /d
 is the two compo-
nent current that acts as the additional topological defect, we
find that the topological excitation in terms of which the
problem with dissipation is most conveniently discussed in-
volves only the longitudinal component and is given by a
“warp” field �w�r ,
� defined through a nonlocal relation in
space,

dml�r,
�
d


=� d2R�w�R,
�
r − R

�r − R�3
. �15�

�w are events where the longitudinal component changes �see
Fig. 1�.

The warp charge �wc is defined by

�w�R,
� =
c

2�
�wc�

i

	�R − Ri�	�
 − 
i� , �16�

in a way analogous to the definition of the vortex charge �wc
above. We will show in Sec. III that the warp-charge is also
quantized.

Given Eq. �15�, the relation between the Fourier-
transformed warp field �w�k ,�n� and the longitudinal com-
ponent of the velocity field is

ı�n

ck
k · ml��n,
� = �w�k,�n� . �17�

In terms of �v, �w, the action, in the continuum limit, neatly
splits into three parts: S=Sv+Sw+Sw� ,

Sv =
1

L2�
� J

k2 ��v�k�n��2,

Sw =
1

L2�
� �

4����
��w�k�n��2,

Sw� =
1

L2�
� G�k,�n��JJt −

�Jt��n�
4�c

−
�2k2

16�2�
���w�k�n��2, �18�

where

G�k,�n� =
1

Jck2 + �C/c��n
2 + ���n�k2 . �19�

The factorization of the action in Eq. �18� is only possible
due to the choice of variables made in Eq. �17�. With this
choice, it follows from Eq. �18� there are logarithmically
interacting vortex charges in space with local interactions in
time, and a logarithmically interacting warps in time with
local interactions in space. The former is the standard
Kosterlitz-Thouless-Berezinskii theory30,31 while the latter is
the charge representation of the Kondo problem36 near the
ferromagnet or antiferromagnet quantum-critical point. Quite
unlike the z=1 theory where Lorentz invariance is manifest,
the space and time degrees of freedom are completely decou-
pled in the theory describing the dissipation driven transition.
Being orthogonal the charges �v and �w are uncoupled; the
action is a product of the action over configurations of �v and
of �w. Any physical correlations are determined by correla-
tions of both charges. The third piece of the action Sw� is
nonsingular because it corresponds to the three-dimensional
Coulomb gas problem which is known to be disordered at all
temperatures.33

The singularity induced by the presence of Ohmic dissi-
pation is transparent in our formulation. Suppose, one works
instead with the degrees of freedom appropriate to the 2D
+1D XY model which are the vortex density �v and the vor-
tex current, Jv. The latter is defined as

Jv = ẑ �
dm

d

. �20�

The action in Eq. �13� is

Z = �
m

exp��
k,�

− 4�2J
Jc��v�k���2

�C/c��n
2 + Jck2 + ���n�k2

− 4�2J
Jv · Jv�C/c�

�C/c��n
2 + Jck2 + ���n�k2

− 4�2J
Jv · Jv��k2/��n��

�C/c��n
2 + Jck2 + ���n�k2	 , �21�

The first two terms can be combined to give the dual repre-
sentation of the 3D XY model. In the absence of dissipation,
these terms lead to the superconductor to insulator phase
transition. The third term introduces a new singularity in the
vortex currents. Due to the continuity equation between �v
and Jv, see below, the two singularities cannot be decoupled
as before and the analysis of the model is not straightfor-
ward.

In terms of warps and vortices the vector field can be
written as

�

Warp

FIG. 1. �Color online� A warp is an event in time where the
divergence of m field changes.
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m = �vẑ � ık/k2 + �wck̂/ı� , �22�

and

Jv = − �v�k/k2 + �wẑ � ck̂ . �23�

Separating the longitudinal and transverse components of the
vector field m and the vector current Jv allows us to factorize
the action. Notice that the new term in the vector current is
transverse and the continuity equation d�v /d
+� ·Jv=0 is
satisfied.

Since warps are excitations that introduce longitudinal
components in the vector field, alternate formulations could
have been considered. In particular, we could have chosen to
define monopoles �sources and sinks in two dimensions�
which are of the form,

�� · m = �m. �24�

Such excitations determine the longitudinal component of
the vector field and their relation to warps is, in momentum
space,

�m��,k� =
ck

�
�w��,k� . �25�

In terms of monopoles one cannot separate the singularities
and the simple description of the dissipation driven transition
is no longer possible. The physics remains the same as the
scaling dimension of monopoles and warps is the same. We
choose to work with warps as the analysis is more transpar-
ent and we do not have to consider the added complication of
the renormalization of velocity.

IV. WARPS AS TOPOLOGICAL DEFECT IN SPACE TIME

In this section we discuss the topological properties and
the physical content of the warps. The definitions in Eqs.
�17� and �15� say that the warps are source for the longitu-
dinal component of the vector field m. Since m is an integer
vector field, it is important also to show that this property is
preserved by Eq. �15� as well as that the warp-charge �wc is
quantized.

Let us first review the familiar case of the vortex in Eq.
�26�. In real space the vector field mt due to a vortex at Ri is

mt�r,
� = �vc
ẑ � �r − Ri�

�r − Ri�2
. �26�

Given the integer vector field m the vortex is defined by its
quantized charge �vc and the singular azimuthal vector field
�1 /r. This vector field is undefined inside a core radius a
where the source of the velocity field with discrete charge �vc
sits. The discreteness of mt is respected once such a singu-
larity is identified. In particular, the corresponding � field has
a discontinuity along a line going from the core out to infin-
ity. One can then proceed to the continuum to analyze the
critical properties of the model.

We see from the solution of Eq. �15� that the field ml due
to a warp created at site Ri and time 
i has the form

ml�r,
� = c�wc��
 − 
i�
r − Ri

�r − Ri�3
. �27�

Analogous to the vortex, this solution is a quantized charge
in a core which serves as the source of a radial velocity field
falling off as 1 /r2. To see this consider the solution to Eq.
�17� with m=��,

��r,
� = ��
 − 
i�2�n
a

�r − Ri�
+ �c, �r − Ri� � a

= ��
 − 
i��c, �r − Ri� � a . �28�

The boundary conditions chosen are ���r−Ri�=a�=�c+2�n
and ���r−Ri�=  �=�c. The first guarantees the quantization
of the warp charge, imposed by the phase jump of 2�n that
occurs at �r−Ri�=a. In other words a warp is an event which
produces a discrete phase jump across the core. The corre-
sponding discontinuity in the phase is discrete, correspond-
ing to a discrete ml field localized along a loop encircling the
core. This localized discrete ml serves as the source of the
radial ml field outside the core. As one moves along any
radial direction crossing this loop, which defines the bound-
ary of the core, the phase jumps by 2�n. Thus the warp
charge is discrete and satisfies the constraint that the vector
field m is discrete. The second boundary condition is chosen
because we are only describing the changes with respect to
the fields because of the warp event at 
=
i.

V. DISSIPATION DRIVEN PHASE TRANSITION

The action for the warps, Eq. �18�, has been studied be-
fore in the context of quantum coherence of two state system
coupled to dissipative baths.37,38 Let us introduce a core-
energy � for the �w’s just as is done to control the fugacity of
�v’s, the vortices. Next consider how the renormalization of
� and � proceeds.39 Including the core energy, the action Sw
is

Sw = �
i
�T�

n

�

4�

1

��n�
��wi��n��2 +� d
���wi�
��2	 .

�29�

The renormalization group �RG� equations for Eq. �29� are
well known,36–38,40

d�̃

dl
= �1 − ���̃ ,

d�

dl
= − ��̃2, �30�

where �̃=�
c and 
c
�2J2E�−1/2 is the short-time cutoff.

The critical point of interest is at �c=1, where �̃ scales to 0;
for ��1 the charges �w freely proliferate as “screening” due

to �̃ becomes effective. ��1 represents the ordered or con-
fined region. We are interested here only in the region �
�1. Well in the quantum-critical region, the �singular part of
the� propagator for �w is
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��w��n��w�− �n�� = �1/4���n�
c�−1. �31�

Note that the form of the propagator in Eq. �31� is valid only
at the critical point. The crossover to the quantum-disordered
or screened state is given for T=0 when �=�x which is of
the order of the inverse of the characteristic screening time,
which may be estimated similarly to Kosterlitz’s estimate41

of the screening length in the xy problem,

�x 
 
c
−1 exp�− b/�1 − �� , �32�

where b is a numerical constant of O�1�. At finite tempera-
tures and low frequencies, the crossover temperature Tx is of
O��x�. On the ordered side ���c, we have to consider the
effect of the charging energy and the flow to the z=1 critical
point. In Fig. 2 we plot the phase diagram in the T-� plane
where only the region ���c is correctly described. The
crossover line is also shown where well above Tx we expect
to observe critical behavior controlled by the quantum-
critical point while below Tx the system is phase disordered
and hence an insulator.

VI. CORRELATION FUNCTION

We can compute the correlation function for the order-
parameter field following a procedure which is a generaliza-
tion of the method developed for the classical 2D XY
model.23 We are interested in the expectation value of
exp�ı�i�� given by

Ci,j,�,� = �eı�i�e−ı�j�� �
� d���e−S̄

� d���e−S

, �33�

C = �eı�i�−ı�j�−2�ı�pathm� . �34�

Notice that the exponential of the sum along the path is
always one as m is an integer fields. We need to include it in
our calculations to reproduce the correlation functions in the
absence of dissipation. Since m is two-dimensional vector,
the contribution is only from the spacelike segment of the

path chosen. We can now proceed as before. Going over to
imaginary time implies that the factor of ı is absorbed in the
definition of the path integral.

To compute the correlation function we introduce a field
�� i� that lives on the sites of the space-time lattice. Its x and
y components are 1 or 0 depending on whether or not the
path includes the link �xy�� to �x+1y�� or �xy+1��, respec-
tively. Similarly we introduce a field �i�

0 which is 1 or 0
depending on whether or not the path includes the link �i��
to �i�+1�. The path we choose to compute the correlation
function is shown in Fig. 3. We can now integrate out the
phase degrees of freedom as before to obtain the functional
in terms of the vector fields alone.

S̄ = Sv + Sw +
1

L2�
�
ln

�2��JG�kl,�n���− ı�n�0�/2��ıkl · mln�

+ �− ıkl � �� �� · �ıkl � mln�

+ c.c. + ��C/c��n
2 + ���n�k2��m · �� � + ��n�0/2

+ kl · �� �/2�2� . �35�

Given the definition of vortex and warps, we can write the
vector field as

m = �v
ık � ẑ

k2 + �w
c

ı�
k̂ . �36�

Replacing in the expression above we see that the vortex part
of the correlation simplifies just as it did in the case of the
action itself.

S̄ = Sv + Sw +
1

L2�
�
ln

�2��JG�kl,�n����− ı�n�0�/2�
k

�
c�w

+
��C� + c�k2/����

kl
�w�k · �� � + c.c. + ��n�0/2

+ kl · �� �/2�2	 + �2�J

k2 �− ıkl � �� �� · �v + c.c.	 �37�

The net correlation is a product of three distinct contribu-
tions. The term independent of vortices and warps is the
spin-wave contribution. Notice that the associated propagator
is three dimensional and as such is nonsingular. This repro-
duces the well-known result that spin waves do not disorder
the long-range order in three dimensions. The other two con-
tributions come from vortices �the last line in Eq. �37�� and
warps. At the dissipative critical point, the singular fluctua-
tions are associated with the warps. Thus the vortices and
spin-wave contributions are completely regular. To compute

τ

j

i µ

ν

FIG. 3. Path between i� and j� used to compute the correlation
function.

T

1/α

Tx

FIG. 2. Dissipative driven proliferation of warps occurs for
1 /��1. The power-law scaling at criticality is cutoff at an energy
scale Tx as discussed in the text.
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the contribution from the warps we follow a procedure simi-
lar to Jose et al.23 Consider the contribution from the warps,

S̄w = Ṡw +
1

L2�
�
ln

�2��JG�kl,�n����− ı�n�0�/2�
ck

�
�w

+
�C + �ck2/����

kl
�w�k · �� � + c.c.	 �38�

The action can be rewritten in real space as

S̄w = Sw +� dRdR�d
d
���r�� �R,
�G�R
;R�
��

�� �C + �ck2/����
ıkl

�w	�R�
�� + �
�
0�R,
�G�R
;R�
��

�� ck

�
�w	�R�
�� , �39�

where the derivatives are taken along the path and the term
�¯��R ,
� is meant to represent the Fourier transform of the
terms within the square brackets. Consider the derivatives
along the path of the fields �� and �0. They represent the
change in value of the fields computed from one point to the
next along the chosen path. Since the first term in Eq. �39�
couples only to the spatial derivative it has finite values only
at �r ,
� and �r� ,
� �ends of the spacelike component of the
path� while the second term couples to time derivatives
which are finite at �r� ,
� and �r� ,
��.

S̄w = Sw +� dRd
1� ck

�
�w	�R
1��G�r�
,R
1�

− G�r�
�,R
1�� +� dRd
1� �C + �ck2/��n��
kl

�w	�R
1�

��G�r
,R
1� − G�r�
,R
1�� �40�

Fourier transforming back we get

S̄ = Sv + Sw +
1

L2�
�
ln

�2��
JG

2
�kl,�n���eıkl·�rj�+ı�n�
���

− �eıkl·�rj�+ı�n�
���� ck

�
�w� + �eıkl·�ri�+ı�n�
�� − eıkl·�rj�+ı�n�
���

�� �C + �ck2/��n��
kl

�w�	 . �41�

Since the action Sw is quadratic, we can compute the corre-
lation to give

C�r − r�,
 − 
�� � exp�− F� ,

F = −
J2c2

4
T�

n
� dk��w��n��w�− �n��

�G2�k,�n�� k2

�n
2 �1 − cos��n�
 − 
����

+ � ��C/c� + �k2/��n��
kl

2

�1 − cos�kl · �ri − r j���

+ � ��C/c� + �k2/��n��
�n

�eıkl·�ri−rj� + eı�n�
�−
��

− eıkl·�ri−rj�+ı�n�
�−
�� − 1�	 . �42�

The order-parameter correlation function has three contribu-
tions from the warps. The first term in the square brackets in
Eq. �42� is from the timelike segment of the path; the second
term corresponds to the spacelike segment of the path and
the last term is an interference term between the two. At the
critical point the correlation of the warps is given by Eq.
�31�. Consider the spacelike segment. It is singular �of the
form �1 / ��n��� as � goes to zero. This implies F→ and the
correlation function is zero unless ri=r j. Thus the correlation
function is local. For ri=r j the last two terms are zero and
only the timelike path contributes to the correlation function.
Performing the integral over momentum k, the correlation
function is given by C�0,
−
���exp�−F�0,
−
���, where

F�0,
 − 
�� = − 2�T�
n

1 − cos��n�
 − 
���
��n�

ln���n�
c� .

�43�

To perform the Matsubara sum we consider the analytic
properties of the logarithm in Eq. �43�. The branch cut intro-
duced on the real axis implies that on integrating over a
contour infinitesimally above the real axis from − to  and
infinitesimally below the real axis from  to − the real part
cancels while the imaginary part enforces a sum over posi-
tive frequencies giving

F�0,
 − 
�� = − 2�T�
n=1


1 − cos��n�
 − 
���

��n�
. �44�

Such correlation functions have been calculated in other con-
texts. In particular using the calculation by Ghaemi et al.,42

the spectral function of the correlation is

Im��q,�� = 
̄c tanh��/2T�, � � 
c
−1. �45�


̄c is O�
c�. The order-parameter correlation at �=1 is local
in space and power law in time. Thus the dissipative 2D XY
model describes a new type of quantum criticality where the
correlations are local in space and are functions of � /T, with
a cutoff provided above. Precisely such criticality had been
postulated to describe the “strange metal” or marginal Fermi-
liquid region of the phase diagram of high-temperature
superconductors.24

VII. ZERO TEMPERATURE PHASE DIAGRAM

So far we have concentrated on the dissipation driven
transition. We now consider the phase diagram in the JC-�
plane. Our analysis clearly shows that the physics at finite
dissipation and at zero dissipation cannot be continuously
connected. This is in accord with the suggestion in Ref. 5
that the zero dissipation limit, described by the 3D XY model
at zero temperature, is in a different universality class com-
pared to the model at infinitesimal dissipation. The other
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limit where the physics is easy to analyze is at infinite dissi-
pation. In this case, the fluctuations in time are energetically
unfavored and the model maps to a 2D XY model. We now
make a guess on the structure of the rest of the phase dia-
gram based on the well-defined theory in the limits dis-
cussed.

In Ref. 5 it is argued that a weak-coupling analysis shows
that the entire Josephson coupling renormalizes to zero at
small dissipation. Furthermore a self-consistent calculation
allows one to map the phase boundary within this scheme.
Such an analysis does not capture the physics of topological
defects that are necessary to determine the entire phase dia-
gram. Given our identification of the relevant degrees of
freedom and the fugacities associated with the new excita-
tions, we propose an alternative understanding of the physics
of the dissipative 2D XY model.

We have explicitly shown above that the critical theory
has two independent singularities. Thus the true phase dia-
gram can be determined by studying the flow of stiffness,
fugacity of vortices and fugacity of warps. The only algebra-
ically ordered phase is one in which both the vortices and
warps are bound. This occurs for 1 /��1 and JC�2 /�. Fur-
thermore this phase is continuously connected to the 2D XY
phase at infinite dissipation. Thus one expects a phase
boundary to exist that starts at JC= and �=1 and ap-
proaches JC=0 and �= asymptotically as shown in Fig. 4.
For 1 /��1 the fugacity of warps grows and the stiffness
vanishes. Similarly, for JC�2 /� the vortices proliferate
driving the stiffness to zero. We find no evidence for the
ordered phase for small JC and ��1 as in Ref. 5 where the
large fugacity of the vortices was ignored. Similarly, for
large JC a minimum value of � is required to overcome the
fugacity of the warps. In other words for any given value of

JC as one increases � the fugacity of warps, which is infinite
at infinitesimal �, remains large until we cross the phase
boundary, upon which it renormalizes to zero. Whether the
resulting phase is algebraically ordered or not depends on the
fugacity of vortices.

Consider the regime where warps proliferate. The vanish-
ing stiffness implies that such excitations should also lead to
screening in the interaction of the vortices. In analogy with
the disordered phase in the Kosterlitz-Thouless �KT� theory,
we should introduce a mass for both vortices and warps. This
in turn will lead to unbinding of vortices as well. We believe
that for small JC, this proliferation of warps and resultant
screening of interaction among vortices will push the phase
boundary away from �=1 to larger values of �. At large JC
we expect our theory to be valid and a dissipation driven
transition will occur at �=1. A schematic phase diagram is
shown in Fig. 4.

At first sight it might appear that a long-range interaction
in time of the form 1 / �
−
��2 is inconsistent with a disor-
dered ground state, where the correlation function decays
faster than the interaction. The reason such a state is allowed
is the fact that the existence of excitations which correspond
to phase slip events in time introduces a second time scale in
the problem. The competition between the short-time scale
physics associated with the fugacity of the warps and the
long-range interaction between them is precisely the reason
for the observed phase transition.

VIII. ASHKIN-TELLER MODEL AND THE CUPRATES

In Ref. 9 we have argued that the long-wavelength theory
of a model for the Pseudogap state for the Cuprate supercon-
ductors is the Ashkin-Teller model, The quantum version of
this model with dissipation is in the universality class of
dissipative quantum 2D XY model. The marginal
FermilLiquid24 properties of the optimally doped system
originate from the fluctuation spectrum of the local quantum-
critical point. In this model the phase variable � represents
the possible current loop order within a given unit cell and
the fourfold anisotropy restricts it to four values representing
states that break time reversal and one of two possible reflec-
tion symmetries. The origin of the dissipation in this system
is due to the coupling of the order parameter, which corre-
sponds to the coherent part of the current operator, to the
incoherent part of the current operator which corresponds to
fermions near the Fermi surface. For long-wavelength fluc-
tuations such a coupling leads to Ohmic dissipation of the
form in Eq. �11�, while term of the form in Eq. �56� �see
below� is not generated. Detailed derivation of the long-
wavelength theory will be provided in a later publication.

The classical Ashkin-Teller model is defined in terms of
two Ising degrees of freedom per unit cell. If we define �i
and 
i as Ising variables taking �1 values to parameterize
the currents along the x and y direction, the four resulting
states in each unit cell �see Fig. 5� form the basis of the low
energy sector of the long-wavelength theory.

The Hamiltonian of the classical Ashkin-Teller model is22

HAT = − �
�ij�

�J2��i� j + 
i
 j� + J4�i� j
i
 j� . �46�

For J4=0 the model reduces to two decoupled Ising models
which is known to undergo a Gaussian phase transition.43

JC

���

3
D

X
Y

2
D

X
Y

Disordered

Algebraic

FIG. 4. �Color online� The zero-temperature phase diagram in
the 1 /�-JC plane for the dissipative 2D XY model. For �=0, the
system undergoes a superconductor to insulator phase transition
with a 3D XY critical point. For infinite �, the dynamics is
quenched and the we recover the 2D XY behavior. There are two
phases for finite dissipation. The disordered phase is characterized
with a diverging fugacity of warps and vortices. The algebraically
ordered phase is one in which both the vortices and warps are
bound, and the correlations are power laws separately in space and
time with continuously varying exponents.
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The analysis has been extended to map out the entire phase
diagram by observing that J4 is a marginal operator in this
theory.44 For −1�J4 /J2�1 the system undergoes a Gaussian
phase transition form a ferromagnetically ordered state to a
paramagnetic state with continuously varying exponents.
Quite remarkable, for −1�J4 /J2�0, the specific-heat expo-
nent � is negative. The Ashkin-Teller model explains why no
singularity is observed in specific-heat measurements at the
pseudogap temperature accompanying the breaking of time-
reversal symmetry. Defining �i=cos��i� and 
i=sin��i� we
can rewrite the Hamiltonian as

HAT = − �
�ij�

�2J2 cos��i − � j� + J4 cos�2�i − 2� j�� , �47�

where �i’s take values � /4,3� /4,5� /4 and 7� /4. The con-
straint can be implemented as a fourfold anisotropy term,

HAT = − �
�ij�

�2J2 cos��i − � j� + J4 cos�2�i − 2� j��

+ �
i

h4 cos�4�i� . �48�

Given this mapping of the Ashkin-Teller model to a XY
model with fourfold anisotropy, we now analyze the effect of
h4 on the local quantum-critical point of the dissipative 2D
XY model.

IX. EFFECT OF FOURFOLD ANISOTROPY

The discrete nature of the underlying degrees of freedom
of the Ashkin-Teller model enforces an Ising-type order at
low temperatures. On increasing temperature, it undergoes a
Gaussian transition into a state which can be described by
proliferation of vortices. It is a unique property of fourfold
anisotropy that the disordering, which occurs via prolifera-
tion of vortices, and ordering, which is enforced by a diverg-
ing anisotropy field, happen at the same temperature.23 We
now analyze the effect of such an anisotropy field on the

local quantum-critical point. To do so we introduce the term
H4=�ih4 cos�4�i� in the Hamiltonian. To handle such a term
in the action we employ the following approximation
scheme:

eh4 cos�4�i� 
 �
pi

eln�y4�pi
2+ı4pi�i, �49�

where pi is an integer field that lives at each site and y4
=h4 /2. For large values of y4 the approximation is reliable as
the sum will be dominated by the terms with pi=0, �1.
Equation �49� introduces two new terms in the action, one
linear in the phase and the other independent of it. We can
proceed as before in integrating out the phase degrees of
freedom to get a new action which is of the form,

S = Sv + Sw +
1

L2�
� Gc2�4�2J

k

�
�w�k,��p�− k,− ��

+ �p�k,���2� + ln�y4��p�k,���2. �50�

Given that the coupling between the integer field p and the
phase variable is linear we can follow a self-consistent pro-
cedure to calculate its effect on the dissipative fixed point. In
this context it is useful to recall that in the absence of dissi-
pation, the disordered side is characterized by the anisotropy
field going to zero, i.e., being marginally irrelevant. Further-
more, in the absence of anisotropy the dissipative transition
leads to a state which is characterized by the proliferation of
warps. In other words, the most singular part of the action is
the interaction between warps in time. Since the action for
the integer field, p, is quadratic, the cumulant expansion im-
plies that the a new term in the action for warps appears of
the form,

S̃4 =
1

2L2�
��4�2JGc2 k

�
�2

�w�k,���w�− k,− ��

� �p�k,��p�− k,− ��� . �51�

The correlation is obtained from the self-consistent solution
of the coupled equations shown diagrammatically in Fig. 6.

A quadratic equation is obtained for each of the propaga-
tors. Since we are looking at the effect of the anisotropy on
the effective action for the warps, we can solve these equa-
tions to obtain the most singular contribution to the propaga-
tor in Eq. �51�. Defining Gp= �p�k ,��p�−k ,−��� and Gw
= ��w�k ,���w�−k ,−���, symbolically the equation satisfied
by Gp can be written as

Cu O

�

�

+1

-1

+1 -1

FIG. 5. The four domains of the circulating current phase are
shown. They can be parameterized by two Ising variables which
represent the currents in the x and y directions.

= +

= +

(a)

(b)

FIG. 6. Equations for the full Green’s function. The thick lines
represent the full propagator �p�k ,��p�−k ,−��� and the thick
dashed lines represent ��w�k ,���w�−k ,−���, while the thin full and
dashed lines represent the same propagators computed in the ab-
sence of the linear coupling with the warps.
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�2Gw
0 Gp

2 − Gp + Gp
0 = 0. �52�

where Gp
0 and Gw

0 are the corresponding propagators evalu-
ated in the absence of the linear coupling and �
= �4�2JGc2k /��. At the quantum-critical point, the most sin-
gular contribution for the warps is logarithmic in frequency,
while the action for the integer fields is not singular. This is
again due to the fact that the integer fields interact via Cou-
lomb Kernel in three dimensions. Thus the most singular part
of the solution is of the form Gp
1 /�2�Gw

0 �−1. Substituting
in Eq. �51�, the effect of the anisotropy is to introduce a term
in the action of the form,

S̃4 

1

2L2�
� �Gw

0 �−1�w�k,���w�− k,− �� . �53�

Thus all anisotropy does is to modify the coupling constants
but the local quantum criticality remains, and the form of the
correlations at the critical point is still local in space and
power law in time.

X. ORIGIN OF DISSIPATION

In addition to the bosonic modes associated with the order
parameter, the low energy sector of the cuprates has fermi-
onic degrees of freedom associated with electron near the
Fermi surface. Quantum fluctuations of the order parameter
correspond to flipping between states of the Ashkin-Teller
model. From the mapping above of the Ashkin-Teller model
to an XY model with fourfold anisotropy, we note that a flip
operator is the quenched angular-momentum operator. For
the cuprates, the analogous operator can be shown to corre-
spond to the curl of the fermionic current.25 The coupling
between the fermionic degrees of freedom and the bosonic
critical modes is of the form,

Hcoup � U�r��� � j� , �54�

where U is an operator which flips the state of the Ashkin-
Teller model �analogous to � /�� in the continuous limit� and
j is the fermionic current. Integrating out fermions leads to
an Ohmic dissipative term in the action for the order param-
eter. The reason is that the current correlation is the conduc-
tivity which goes as ���. Unlike Josephson-junction arrays,
the origin of dissipation in cuprates is the presence of both
fermionic and bosonic degrees of freedom in the low energy
long-wavelength theory.

XI. COUPLING TO OTHER DISSIPATIVE BATHS

The form of dissipation considered so far is physically
motivated to reproduce a term linear in the gradient of the
phase variable in its equation of motion. Furthermore it can
also be understood as arising from dissipation via resistors
connecting the islands on which the phase degrees of free-
dom live. In principle one can also study the effect of other
forms of dissipation that are allowed by symmetry. In par-
ticular, we can introduce a term which leads to suppression
of density in each grain instead of the phase difference be-
tween nearest-neighbor grains as in Eq. �11�.

Sn = �n�
i
� d
d
�

�ni�
� − ni�
���2

�
 − 
��2
. �55�

To understand the effect of such a term on the dissipation
driven critical point we consider the effect of integrating out
frequency shells as before. We find that the coupling constant
�n scales to zero since it has a dimension of −2. In other
words such a form of dissipation is irrelevant near the local
quantum-critical point, while for a z=1 critical point such a
term is marginal.

A dissipative mechanism where the external bath directly
couples to the phase variable leads to an action of the form,

S� = ���
i
� d
d
�

��i�
� − �i�
���2

�
 − 
��2
. �56�

The coupling �� is marginal at the local quantum-critical
point. A study of the critical properties showed the existence
of a line of fixed points controlling the transition from the
superconducting to the insulating state,45 but the approxima-
tion made was called into question.46 A weak coupling study
of the model has been reported47 and a strong coupling
analysis will be the subject of future investigation.

XII. RELATIONSHIP TO OTHER MODELS

With the identification of the correct degrees of freedom
we have been able to access the dissipation driven critical
point that has been previously shown to exist within a per-
turbative analysis. Furthermore, fourfold anisotropy does not
alter the local criticality obtained at this quantum-critical
point. Thus the dissipative XY model defines a new univer-
sality class. Classical models which undergo a Gaussian
phase transition from an ordered to a disordered phase will
belong to this universality class provided their quantum gen-
eralization include Ohmic dissipation. In this context we can
look at the physics of six and eight vertex models.

The phase diagram of the six vertex model has two or-
dered phases, the orbital ferromagnet and the orbital antifer-
romagnet, and a power-law phase. The high-temperature
phase is the power-law phase and at low temperatures under-
goes a transition to one of the two ordered phases. It is
known that there exists an essential singularity at the phase
transition and the physics is similar to the XY model except
that is inverted. The high-temperature phase is power-law
correlated while the low-temperature phase has finite
correlations.48 Unlike the dissipative XY model considered
here, the inverted character of the phase transition, while
allowing for a phase transition without a singularity in spe-
cific heat,49 is unlikely to belong to the universality class of
local criticality. However, the low-temperature physics of
this model including quantum generalization allowing for
sources and sink is yet to be analyzed. The classical eight
vertex model on the other hand has in its parameter space a
high-temperature disordered phase which can undergo a KT
transition to an ordered phase.20 Such models also share the
feature that the specific heat is nonsingular at the phase tran-
sition. Quantum generalization of this model with dissipation
has not been studied. In particular it is not clear which op-
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erators in the classical theory are equivalent to the warps
defined in the continuum. A detailed analysis of the condi-
tions for classical eight vertex models to exhibit local criti-
cality is beyond the scope of this paper.

Local quantum criticality closely related to the form pro-
posed for the cuprates24 and derived here has also been used
to fit the spectral function near the quantum-critical point of
a heavy fermion26 measured by neutron scattering. Some the-
oretical calculations27 emphasizing the deconstruction of the
single impurity Kondo effect near the quantum-critical
point50 have been performed. A general point based on the
present work appears worth making: local quantum critical-
ity requires showing that near the quantum-critical point,
there must be variables in terms of which the action for low
energies is separable exactly into orthogonal parts which in-
teract only in space without retardation in time, and those
which are power law in time but interact only locally in
space. It appears to us that only dissipation driven quantum-
critical points can have this property. At this point, it does
not appear clear to us in terms of which variables, the general
action of the heavy fermion problem with dissipation, local
Kondo interactions, interaction between local moments,
magnetic order with attendant deconstruction of the Kondo
effect, etc., may be cast into the simple structure due to

which we have been able to solve the problems addressed in
this paper.

XIII. SUMMARY

In this paper we have provided a detailed analysis of the
dissipation driven phase transition in the quantum 2D XY
model. There exists a critical point in the phase diagram
where the correlation is shown to be local in space and
power law in time. This is a new paradigm in critical phe-
nomena which does not appear in the universality classes of
classical dynamical critical phenomena.51 The quantum dis-
ordering due to the proliferation of a new of class of topo-
logical defects, the warps, which interact logarithmically in
time but local in space allows such criticality. We have dis-
cussed that the results here are only asymptotically true and
only valid for certain forms of dissipation. A verification of
the results by quantum Monte Carlo calculations is highly
desirable.

A principal outcome of the paper is to derive the phenom-
enological assumptions of the marginal Fermi-liquid theory
with which the critical properties of the cuprates in the
anomalous metallic regime have been understood.
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